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LElTER TO THE EDITOR 

Percolation of hypersurfaces and finite-size scaling 
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t Institute for Theoretical Physics, University of Cologne, D-5000 Koln 41, West Germany 
$ Service de Physique Thkorique, CEN Saclay, F-91191 Gif-sur-Yvette, France 

Received 27 August 1985 

Abstract. We consider the percolation of a surface without holes in a system of randomly 
occupied plaquettes. We show that duality can relate not only the critical points but also 
the correlation length exponents of this problem to the usual random bond percolation. The 
generalisation to hypersurfaces in higher dimensions is discussed. 

In random bond percolation one usually considers the threshold p :  as the smallest 
probability at which a spanning path appears in a box of arbitrary size. At this critical 
point, the backbone of the infinite cluster appears, which can be considered as a union 
of spanning self-avoiding walks. One can also ask the question whether in three 
dimensions a singly connected (no holes) surface appears spanning through the infinite 
system. This surface percolation is of interest because of its connection to lattice gauge 
theory (Aizenman et a1 1983) and it is closely related to the problem of fracture 
threshold (Chelidze 1980). However, it is different from the plaquette problem of 
Wilke er a1 (1985), which seems to be equivalent to a site percolation model where 
connections up to the fourth neighbours are allowed. 

Aizenman et a1 (1983) gave arguments that, for d = 3 in a system of randomly 
occupied plaquettes, at a given value of the concentration p s  of plaquettes, there is a 
transition in the asymptotic behaviour of the probability of finding a large area on 
surfaces without holes inside. They also showed that the critical point p :  of this 
problem is related to the critical point p :  of the bond percolation threshold by duality 
and p z  = 1 -p : .  In this letter we first discuss the critical behaviour of this surface 
percolation transition in a cubic lattice and then its generalisations to higher- 
dimensional hypercubic cases. 

The difficulty in this surface percolation arises from the fact that the clusters cannot 
be defined unambiguously. A surface with holes inside (essentially the problem of 
Wilke et a1 1985) cannot be considered as a single cluster, since it can be infinitely 
large far before the threshold of singly connected surfaces we are interested in. 
Therefore, the holes should divide a surface into subsets (‘clusters’), but the cuts 
between the holes can have infinitely many positions. Thus we have to concentrate 
on the backbone which is known to have, for the bond problem, the same correlation 
length exponent vB as the problem defined through the probability that two sites belong 
to the same cluster (Shlifer et a1 1979). The surface backbone can be defined as the 
union of singly connected self-avoiding surfaces which occur in the system of randomly 
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occupied plaquettes (and which should not be confused with ‘self-avoiding idndom 
surfaces’ (Maritan and Stella 1984) and span the system from border to border. 

We define the dual problem to surface percolation as follows (Aizenmann et a1 
1983): each plaquette has a bond in its centre perpendicular to it, which is occupied 
if the plaquette is empty, and vice versa. Therefore this is a bond percolation problem 
with the occupation probability pB = 1 - p s .  Clearly, if the ‘last’ bond from the infinite 
bond cluster is cut by the surface, the surface will span the infinite sample without 
any holes. 

Let us now see the physical meaning of the correlation length tS of the surface 
problem. At a given value of p s  < p :  one can find areas of convex border on surfaces 
without holes inside. If p s  + p :  there will be surfaces with larger and larger areas. The 
characteristic radius of these areas will be tS. However, this length is just the charac- 
teristic distance between the nodes of the bond backbone in the ‘blobs, nodes and 
links picture’ (Stanley and Coniglio 1983), since the surfaces can avoid the finite bond 
clusters, the dangling ends and blobs of the infinite cluster, but at least on distances 
of the nodes they must get holes. Thus ts = &, the bond percolation correlation length. 

The duality also shows up in the finite size scaling. Let us put the system of 
randomly occupied plaquettes into a box of linear size L where L<< ts. Then we will 
find a percolating surface spanning the finite box. However, if L -  ts we no longer 
find a spanning surface, since holes appear, but the distance between the holes is the 
same as that between these bonds in the dual problem which penetrate through the 
surfaces. 

The above argument shows already how the exponent vs of the surface problem, 
defined as t sCc lps -p : ( - ’ s ,  can be calculated. Since this problem is dual to the usual 
bond percolation, the finite size scaling determination of the correlation length exponent 
v B  of the bond problem (using the method of Levinshtein et al (1975)) is the same as 
the derivation of vS. In this method, the statistics over the occurrence of the first 
spanning cluster (or backbone) is taken in a box of size L3, the width of the distribution 
scaling as L-I”’. However, due to duality, the statistics over the first spanning surfaces 
will be the same as for the bonds and therefore 

Generally, in d dimensions, one has d - 1 thresholds, which are defined as the 
critical points of the occurrence of m-dimensional hypersurfaces (1 < m < d, m = 1 
corresponds to bond percolation, m = 2 to surface percolation). The thresholds of the 
m and (d-m)-dimensional problems are again related by duality (Aizenman et a1 
1983). A similar argument to the above would therefore suggest that v d - l =  vB for 
general d, where v d - 1  is the correlation length exponent of the percolation problem 
for ( d  - 1)-dimensional surfaces in d dimensions, m = d - 1. 

However, this result is valid only up to d = 6 ,  the upper critical dimension of bond 
percolation. From bond percolation we learned that at the upper critical dimension 
the backbone becomes essentially a random walk, the multiply connected parts no 
longer being important, and at the threshold there is an infinite number of infinite 
clusters separated by a length diverging in a different way from the correlation length 
(Coniglio 1985). Generalising this result, it is expected that above the upper critical 
dimensions of the m-dimensional percolation, the backbone will be a random object 
with the topological dimension m. According to the transparency argument (Stanley 
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1985) the dimension above which two random objects of fractal dimension df can 
avoid each other is 2df. This leads to a lower bound for the upper critical dimension 
of the m problem: d!,” > 2d!””, with dim’ being the fractal dimension of the random 
m-hyperface. (d:” = 2 and dy’  = 4 (Parisi 1979). It is only a lower bond, because in 
general the transparency argument should be applied to the infinite cluster and not to 
the backbone.) However, this lower bound shows already that the upper critical 
dimension of the d - 1 problem in d dimensions should go to infinity when d + CO. 

Moreover, since d im’> m, d$”+w,  if m -*CO and V d - 1  cannot be expected to be i, the 
mean-field value of the dual (m = 1) problem for all d > 6. 

This virtual contradiction finds its solution in the breakdown of hyperscaling and 
finite-size scaling (Binder et al 1985) above the upper critical dimension. Binder et al 
(1985) showed that there is a second characteristic length I called the thermodynamic 
length, with an exponent d,v/d, which appears beside the correlation length 6; it is 
this thermodynamic length which governs finite-size scaling. In the finite-size scaling 
for percolation this effect has a simple geometrical explanation. Above the upper 
critical dimension there are infinitely many infinite clusters at the threshold (Coniglio 
1985) and the thermodynamic length I is the characteristic distance between these 
infinite incipient clusters. In a finite-size scaling study of bond percolation (Levinshtein 
et a1 1975) the following reasoning can be made. Let us start from above the critical 
point in a box of size L. Percolation through the box will be impossible if gaps of 
size L become characteristic. Below the critical dimension d , ,  tB describes the gap 
size between the nodes in the infinite cluster, but above d, the smaller characteristic 
length, i.e. I ,  the distance between the infinite clusters, is to be taken, since we are not 
interested in holes in one infinite cluster but in the space without any of them. 

For the (d - 1)-dimensional hypersurface percolation the length 1 is the real correla- 
tion length, because, from the point of view of the hypersurface, it does not matter 
whether the holes were formed by a single or by many infinite bond clusters, obviously 
the shorter length, i.e. I ,  is to be taken. Therefore we can conclude that 

Let us finish with some speculation about the upper critical dimension of the 
hypersurface problem, especially for the most interesting m = 2 case. It is known that 
the upper critical dimension for the case of self-avoiding surfaces (SAS) is eight (Maritan 
and Stella 1984). (This result can be obtained by the transparency argument using the 
fractal dimension of the corresponding random surfaces d y ’ =  4 (Parisi 1979).) Let 
us suppose that the mean-field correlation length exponent of surface percolation is 
equal to the reciprocal value of the fractal dimension of the mean-field backbone, i.e. 
again a random surface. Since the backbone consists essentially of cutting bonds in 
the mean-field theory and since the number of cutting bonds has an exponent 1/v,  
this is plausible. In addition, we assume that the relation d~”’)/d$”’’ = 3 is valid, as it 
is for m = 1. If our assumptions are correct we obtain d y )  = 12. As a possible extension 
of this result we suggest that generally dim’ = 2m, as is the case for m = 1,2, and that 
dLm)=6m. 

Thanks are due to A Coniglio and D Stauffer for discussions. JK gratefully acknow- 
ledges the financial support by SFB 125. 



L1112 Letter to the Editor 

References 

Aizenman M, Chayes J T, Chayes L, Frohlich J and Russo L 1983 Commun. Math. Phys. 92 19 
Binder K, Nauenberg M, Privman P and Young A P 1985 Phys. Rev. B 31 1498 
Chelidze T L 1980 Sou. Phys.-Solid State 22 1673 
Coniglio A 1985 Preprint, Les Houches lecture notes 
Levinshtein M E, Shklovskii B I, Sur M S and Efros A L 1975 Zh. Eksp. Teor. Fiz. 69 383 
Maritan J L and Stella A 1984 Phys. Rev. Lett. 53 123 
Parisi G 1979 Phys. Lett. 81B 357 
Shlifer G, Klein W, Reynolds P J and Stanley H E 1979 1. Phys. A: Math. Gen. 12 L169 
Stanley H E in On Growth ond Form-A Modem View ed H E Stanley and N Ostrowsky (Dordrecht: 

Stanley H E and Coniglio A 1983 in Percolation Structures and Processes ed G Deutscher, R Zallen and J 

Wilke S, Guyon E and de Marsily G 1985 Math. GeoL 17 17 

Martinus Nijhoff) 

Adler (Bristol: Adam Hilger) 


